Beefy Boxes and Bandwidth Generously Provided by pair Networks
Perl: the Markov chain saw
 
PerlMonks  

comment on

( [id://3333]=superdoc: print w/replies, xml ) Need Help??

Greetings Fellow Monks,

For an image analysis application I am writing using the PDL, I needed to compute some texture measures. After some research, I decided to go with the measures proposed by Rober Haralick based on the Gray Level Co-occurrence Matrix (GLCM). To make a long story short, I found a nice tutorial on the GLCM and started implementing the code for computing the GLCM and the texture measures following the equations presented in the tutorial. This has shown me that I don't know PDL nearly as well as I would like. However, here is my first take to computing the GLCM and some of the texture measures:

#!/usr/bin/perl use warnings; use strict; use PDL; use PDL::NiceSlice; # ================================ # cooccurrence: # # $glcm = cooccurrence( $pdl, $dir, $dist, $symmetric ) # # computes the grey level coocurrence coocurrence # matrix of piddle $pdl for a given direction and # distance # # Inputs: # $pdl # $dir: direction of evaluation # $dir angle # 0 +90 # 1 +45 # 2 0 # 3 -45 # 4 -90 # $dist: distance between pixels # $symmetric: 0 => non-symmetric $glcm # # ================================ sub cooccurrence { my ( $pdl, $dir, $dist, $symmetric ) = @_; my $min_quantization_level = int( min( $pdl ) ); my $max_quantization_level = int( max( $pdl ) ); my $glcm = zeroes( $max_quantization_level - $min_quantization_level + 1 , $max_quantization_level - $min_quantization_level + 1 ); my ($dir_x, $dir_y); if ( $dir == 0 ){ $dir_x = 0; $dir_y = 1; } elsif ( $dir == 1 ){ $dir_x = 1; $dir_y = 1; } elsif ( $dir == 2 ){ $dir_x = 1; $dir_y = 0; } elsif ( $dir == 3 ){ $dir_x = 1; $dir_y = -1; } elsif ( $dir == 4 ){ $dir_x = 0; $dir_y = -1; } else { $dir_x = 0; $dir_y = 0; } $dir_x *= $dist; $dir_y *= $dist; my $glcm_ind_x = 0; my $glcm_ind_y = 0; foreach my $grey_level_1 ( $min_quantization_level .. $max_quantiz +ation_level ){ my ( $ind_x_1, $ind_y_1 ) = whichND( $pdl == $grey_level_1 ); $ind_x_1 += $dir_x; $ind_y_1 += $dir_y; foreach my $grey_level_2 ( $min_quantization_level .. $max_qua +ntization_level ){ my ( $ind_x_2, $ind_y_2 ) = whichND( $pdl == $grey_level_2 ); my $count = 0; foreach my $i (0..$ind_x_1->getdim(0) - 1) { foreach my $j (0..$ind_x_2->getdim(0) - 1) { if ( ($ind_x_1($i) == $ind_x_2($j)) and ($ind_y_1($i) == $ind_y_2($j)) ) { $count++; } } } $glcm( $glcm_ind_x, $glcm_ind_y ) .= $count; $glcm_ind_y++; } $glcm_ind_y = 0; $glcm_ind_x++; } if ( $symmetric ) { $glcm += transpose( $glcm ); } $glcm /= sum( $glcm ); return $glcm; } # ================================ # texture_descriptors: # # ( $contrast, $dissimilarity, $homogeneity # , $inverse_difference, $asm, $energy ) # = texture_descriptors( $glcm ); # # computes a set of texture descriptors # associated with the GLCM $glcm # # $contrast: # Range = [0 .. ($glcm->getdim(0)-1)^2] # $contrast = 0 for a constant image. # $homogeneity: # Measures the closeness of the distribution # of elements in the GLCM to the GLCM diagonal. # Range = [0 1] # $homogeneity is 1 for a diagonal GLCM. # ================================ sub texture_descriptors{ my $glcm = pdl( @_ ); my $n = $glcm->getdim(0); my $i = sequence( $n ); my $j = sequence( $n ); my $diff = $i->dummy(0, $n) - $j->dummy(1, $n); my $contrast = sum( $glcm * ($diff ** 2) ); my $dissimilarity = sum( $glcm * abs( $diff ) ); my $homogeneity = sum( $glcm / ( 1 + $diff ** 2) ); my $inverse_difference = sum( $glcm / ( 1 + abs( $diff ) ) ); my $asm = sum( $glcm ** 2 ); my $energy = sqrt( $asm ); return ( $contrast, $dissimilarity, $homogeneity , $inverse_difference, $asm, $energy ); } my $pdl = pdl([0,0,1,1],[0,0,1,1],[0,2,2,2],[2,2,3,3]); my $glcm = cooccurrence( $pdl, 2, 1, 1 ); print "glcm: $glcm\n"; my ( $contrast, $dissimilarity, $homogeneity , $inverse_difference, $asm, $energy ) = texture_descriptors( $glcm ); print "contrast: $contrast\tdissimilarity: $dissimilarity\n"; print "homogeneity: $homogeneity\t"; print "inverse difference: $inverse_difference\n"; print "ASM: $asm\tenergy: $energy\n";

I still have a lot more work to do, but feel free to go ahead and share with us your approach for finding these or the remaining texture measures.

Cheers,

lin0

In reply to Texture measures computation using PDL by lin0

Title:
Use:  <p> text here (a paragraph) </p>
and:  <code> code here </code>
to format your post; it's "PerlMonks-approved HTML":



  • Are you posting in the right place? Check out Where do I post X? to know for sure.
  • Posts may use any of the Perl Monks Approved HTML tags. Currently these include the following:
    <code> <a> <b> <big> <blockquote> <br /> <dd> <dl> <dt> <em> <font> <h1> <h2> <h3> <h4> <h5> <h6> <hr /> <i> <li> <nbsp> <ol> <p> <small> <strike> <strong> <sub> <sup> <table> <td> <th> <tr> <tt> <u> <ul>
  • Snippets of code should be wrapped in <code> tags not <pre> tags. In fact, <pre> tags should generally be avoided. If they must be used, extreme care should be taken to ensure that their contents do not have long lines (<70 chars), in order to prevent horizontal scrolling (and possible janitor intervention).
  • Want more info? How to link or How to display code and escape characters are good places to start.
Log In?
Username:
Password:

What's my password?
Create A New User
Domain Nodelet?
Chatterbox?
and the web crawler heard nothing...

How do I use this?Last hourOther CB clients
Other Users?
Others chanting in the Monastery: (3)
As of 2024-04-24 02:03 GMT
Sections?
Information?
Find Nodes?
Leftovers?
    Voting Booth?

    No recent polls found