Beefy Boxes and Bandwidth Generously Provided by pair Networks
We don't bite newbies here... much
 
PerlMonks  

Tk::Zinc based geometry puzzles

by thundergnat (Deacon)
on Apr 21, 2008 at 17:06 UTC ( #681969=sourcecode: print w/replies, xml ) Need Help??
Category: Fun Stuff
Author/Contact Info
Description:

One of my friends teaches math to 7th-8th graders and came up with a little puzzle game to help demonstrate elementary geometry (coordinate systems, transform/translation of shapes). It consists a series of puzzles cut out of cardboard that the students assemble to form a perfect square.

He was showing it to me and mentioned that it was getting unwieldy to keep all the individual puzzles sorted out and in their proper envelopes. A lightbulb went on and I whipped up this script for him.

This is a simple puzzle game. Each puzzle has 2 or more pieces that you can drag and/or rotate to fit together to form a perfect square. Every vertex of each piece falls exactly on a 4 X 4 unit square grid, so each piece is described by its whole number verticies on a 0 .. 4 by 0 .. 4 cartesion grid.

Many of the puzzles are simple, some are tricky, all have at least one solution.

Works under Windows and Linux (and probably others but haven't tested).

Update: Added smoothing suggested by zentara

#!/usr/bin/perl

use strict;
use warnings;
use Tk;
use Tk::BrowseEntry;
use Tk::Zinc;

use constant OS_Win => $^O =~ /Win/;

my $current;      # currently selected shape
my @currentxy;    # coordinates of pointer when button clicked
my %objects;      # hash of piece IDs => vertex coordinates for each p
+uzzle
my @vertices;     # array of the coordinates of all the shapes for sna
+pping
my @puzzles;      # array of puzzles read in from DATA file
my $color;        # default color of objects
my $block    = 50;               # puzzle square is 4 x 4 $block pixel
+ blocks
my $screen   = 15;               # default screen size - in blocks squ
+are
my $selected = 'yellow';         # color of selected object
my $pi4      = atan2( 1, 1 );    # constant pi/4
my $which    = 0;                # currently loaded puzzle
my $detent   = 16;               # 'Stops' in a 90 degree rotation
my @colors   = qw/bisque cyan green magenta pink red tan/;

{
    local $/ = '@@';
    while (<DATA>) {
        chomp;
        s/#.+\n//;
        push @puzzles, [ split / *\r?\n/, $_ ] if /\w/;
    }
}

my $mw = MainWindow->new();

{ # scale window to fit screen
    my $width  = $mw->screenwidth;
    my $height = $mw->screenheight;
    my $square = $height - $width > 0 ? $width : $height;
    $block = int( $square * .8 / $screen );
    my $dim = $block * $screen;
    $mw->geometry( $dim . 'x' . $dim );
}

$mw->Label(
    -text => "Fit the pieces together to form a perfect square.\n".
      'Left drag to move selected; Mouse Wheel to rotate selected.' )
  ->pack;

my $zinc = $mw->Zinc(
    -borderwidth => 3,
    -relief      => 'sunken'
  )->pack(
    -expand => 1,
    -fill   => 'both',
  );

my $buttonbar = $mw->Frame->pack;

my $index = $buttonbar->BrowseEntry(
    -label     => 'Puzzle #',
    -variable  => \$which,
    -width     => 6,
    -browsecmd => sub {
        del();
        load($which);
    }
  )->grid(
    -row    => 1,
    -column => 1,
    -padx   => 2,
  );

$index->insert( 'end', 0 .. $#puzzles );

$buttonbar->Button(
    -text    => 'Next',
    -width   => 10,
    -command => sub {
        del();
        $which++ if $which < $#puzzles;
        load($which);
    }
  )->grid(
    -row    => 1,
    -column => 2,
    -padx   => 2,
  );

$buttonbar->Button(
    -text    => 'Random',
    -width   => 10,
    -command => sub {
        del();
        $which = int rand @puzzles;
        load($which);
    }
  )->grid(
    -row    => 1,
    -column => 3,
    -padx   => 2,
  );

my $colorsel = $buttonbar->BrowseEntry(
    -label     => 'Color',
    -variable  => \$color,
    -width     => 10,
    -browsecmd => sub {
        for ( keys %objects ) {
            $zinc->itemconfigure( $_, -fillcolor => $color );
            $index->focus;
        }
    }
  )->grid(
    -row    => 1,
    -column => 4,
    -padx   => 5,
  );

$colorsel->insert( 'end', @colors );

$mw->update;

load(0);

$mw->repeat( 100, \&snap );

MainLoop;

sub load {
    my $which = shift;
    $color = $colors[ int rand @colors ];
    my $pattern = $puzzles[$which];
    for ( @{$pattern} ) {
        my @points;
        my ( $repeat, @shape ) = split /\D/, $_;
        while ($repeat) {
            my $x = int rand($block) + $mw->width / 2;
            my $y = int rand($block) + $mw->height / 2;
            while (@shape) {
                push @points, $x - $block * pop @shape,
                  $y - $block * pop @shape;
            }
            $current = $zinc->add(
                'curve', 1, [@points],
                -closed    => 1,
                -visible   => 1,
                -filled    => 1,
                -fillcolor => $color,
                -smoothrelief => 1
            );
            add_bindings($current);
            @currentxy = ( $x, $y );
            rotate( ( int rand 32 ) / 4 + 1 );
            update_vertices();
            $repeat--;
        }
    }
}

sub del {
    $zinc->remove($_) for keys %objects;
    %objects = ();
}

sub add_bindings {
    my $object = shift;
    $zinc->bind( $object, '<Enter>' => sub { choose($object) } );
    $zinc->bind( $object, '<Leave>' => sub { unchoose() } );

    $zinc->bind( $object, '<1>'         => \&click );
    $zinc->bind( $object, '<B1-Motion>' => \&mousemove );
}

sub mousemove {
    my $ev = $zinc->XEvent();
    move( $ev->x - $currentxy[0], $ev->y - $currentxy[1] );
}

sub move {
    my ( $x, $y ) = @_;
    $zinc->translate( $current, $x, $y );
    $currentxy[0] += $x;
    $currentxy[1] += $y;
    update_vertices();
}

sub update_vertices {
    $objects{$current} = '';
    $objects{$current} .= "$_->[0],$_->[1] "
      for $zinc->transform( $current, 'device', [ $zinc->coords($curre
+nt) ] );
}

sub choose {
    $current = shift;
    $zinc->itemconfigure( $current, -fillcolor => $selected );
    $zinc->raise($current);
    update_vertices();
    if (OS_Win) {
        $mw->bind(
            '<MouseWheel>' => [
                sub {
                    click();
                    rotate( $_[1] / 120 / $detent );
                },
                Ev('D')
            ]
        );
    }
    else {
        $mw->bind( '<4>' => sub { click(); rotate( 1 / $detent ) } );
        $mw->bind( '<5>' => sub { click(); rotate( -1 / $detent ) } );
    }
}

sub unchoose {
    $zinc->itemconfigure( $current, -fillcolor => $color );
    if (OS_Win) {
        $mw->bind( '<MouseWheel>' => sub { } );
    }
    else {
        $mw->bind( '<4>' => sub { } );
        $mw->bind( '<5>' => sub { } );
    }
}

sub click {
    my $ev = $zinc->XEvent();
    @currentxy = ( $ev->x, $ev->y );
}

sub rotate {
    my $angle = shift;
    $zinc->rotate( $current, $angle * $pi4 * 2, @currentxy );
    update_vertices();
}

sub snap {
    my ( @points, $done );
    for ( keys %objects ) {
        next if $_ eq $current;
        push @points, split ' ', $objects{$_};
    }
    for ( split ' ', $objects{$current} ) {
        my ( $x1, $y1 ) = split /,/, $_;
        for my $vertex (@points) {
            my ( $x2, $y2 ) = split /,/, $vertex;
            if ( abs( $x2 - $x1 ) < 8 and abs( $y2 - $y1 ) < 8 ) {
                move( $x2 - $x1, $y2 - $y1 );
                $done++;
            }
            last if $done;
        }
        last if $done;
    }
}

# Shapes for puzzles laid out on a 5 x 5 cartesian
# map. Pieces may be slid and rotated as needed.
# Each line represents a shape in the puzzle.
# The first number is the number of times the shape
# appears in the puzzle, the remaining numbers are
# x,y coordinate pairs of each vertex in the shape.
# The 'x' and comma delineators are not critical, any
# non-number separator will work.

__DATA__
#0
2x0,0,4,0,4,4
@@
#1
2x0,0,3,0,3,4,2,4
@@
#2
2x0,0,2,2,0,4
1x0,0,4,0,4,4
@@
#3
2x0,0,2,0,2,2,0,2
1x0,0,4,0,4,2,0,2
@@
#4
1x0,0,4,0,0,2
1x0,0,4,0,4,2
1x0,0,4,2,0,4
@@
#5
4x0,0,4,0,2,2
@@
#6
4x0,0,3,0,2,2,0,1
@@
#7
2x0,0,1,0,1,1,0,1
2x0,0,2,0,2,1,0,1
2x0,0,3,0,3,1,0,1
1x0,0,4,0,4,1,0,1
@@
#8
4x0,0,2,0,0,2
1x2,0,4,2,2,4,0,2
@@
#9
2x0,0,1,0,0,1
2x0,0,3,0,0,3
1x1,0,4,3,3,4,0,1
@@
#10
2x0,0,1,0,0,1
1x0,0,2,0,0,2
1x0,0,2,0,1,1
1x0,0,4,0,2,2
1x0,0,4,4,0,4
@@
#11
2x0,0,2,0,0,1
2x0,0,3,0,0,2
2x2,0,2,4,0,1
@@
#12
4x0,0,1,0,0,1
4x0,0,2,0,1,1
2x1,0,2,1,1,2,0,1
1x1,0,4,3,3,4,0,1
@@
#13
2x0,0,2,0,0,2
4x0,0,2,0,1,1
2x0,2,2,0,3,1,1,3
@@
#14
4x0,0,2,0,0,2
2x0,1,1,0,2,1,1,2
1x0,1,1,0,3,2,2,3
@@
#15
4x0,0,1,0,0,1
4x0,0,2,0,1,1
5x0,1,1,0,2,1,1,2
@@
#16
1x0,0,2,0,2,2,0,2
4x0,0,3,0,3,1,0,1
@@
#17
1x0,0,4,0,0,1
1x0,0,4,0,4,1
3x0,0,4,1,0,2
@@
#18
2x0,0,2,0,0,1
2x0,0,2,0,2,1
2x0,0,2,1,0,2
2x0,1,2,0,4,1,2,2
@@
#19
4x0,0,3,0,3,1
1x0,3,1,0,4,1,3,4
@@
#20
4x0,0,1,0,2,1,0,3
1x0,1,1,0,2,1,1,2
@@
#21
4x0,0,3,0,3,1,1,1,1,2,0,2
@@
#22
4x0,0,3,0,3,1,2,1,2,2,1,2,1,1,0,1
@@
#23
2x0,0,2,0,1,1
1x0,0,2,0,2,2
1x0,0,2,0,3,1,1,1
2x0,0,2,2,0,4
1x0,1,1,0,2,1,1,2
@@
#24
1x0,0,1,0,0,1
3x0,0,1,0,0,2
1x0,0,2,1,2,2,0,1
1x0,0,3,0,2,1
1x0,1,1,0,1,2
1x0,2,1,0,2,1,1,3
1x0,2,1,0,3,1,2,3
@@
#25
2x0,0,1,0,0,2
2x0,0,1,0,2,1,1,1
2x0,0,2,0,2,2
1x0,2,1,0,2,0,1,2
2x0,2,1,0,2,1,1,3
@@
#26
2x0,0,1,0,0,1
1x0,0,1,0,0,3
1x0,0,1,0,1,3
1x0,0,2,0,1,1
1x0,0,2,0,1,3
1x0,1,1,0,2,3,1,4
1x0,3,1,0,2,1,1,4
@@
#27
4x0,0,1,0,3,1,2,2
4x0,0,1,1,0,3
@@
#28
4x0,0,0,1,4,1,4,0
@@
#29
2x0,0,1,2,0,4
4x0,0,2,0,1,2
1x0,2,1,0,2,2,1,4
@@
#30
2x0,0,2,0,0,4
1x0,4,2,0,4,0,2,4
@@
#31
4x0,0,1,0,0,2
2x0,2,1,0,4,0,3,2
@@
#32
2x0,0,1,0,0,2
2x0,0,1,0,1,2
1x0,2,1,0,3,0,4,2,3,4,1,4
@@
#33
2x0,0,1,0,0,2
2x0,4,0,2,1,0,2,0
1x0,4,2,0,4,0,2,4
@@
#34
2x0,0,1,0,0,2
2x0,0,2,0,0,3
1x0,3,2,0,4,1,2,4
@@
#35
2x0,0,1,0,1,1
1x0,0,1,0,1,2,0,2
3x0,0,1,1,0,2
2x0,0,2,0,2,2
1x0,0,3,0,2,1
1x0,1,1,0,2,1,1,2
1x0,1,1,0,3,2,2,2
@@
#36
2x0,0,1,0,0,1
2x0,0,1,0,2,1,0,3
2x0,0,2,0,3,1,1,1
1x0,2,2,0,4,0,2,2
@@
#37
2x0,0,1,0,0,1
3x0,0,1,1,0,2
1x0,0,1,1,1,2,0,1
1x0,0,4,0,2,2
1x0,1,1,0,1,1,0,2
1x0,1,1,0,2,1,1,2
1x0,1,1,0,2,1,2,2,1,3,0,2
@@
#38
1x0,0,1,0,1,1,0,1
1x0,0,1,0,1,2,0,2
1x0,0,1,0,1,3,0,3
1x0,0,2,0,2,2,0,2
1x0,0,2,0,2,3,0,3
@@
#39
1x0,0,1,1,0,2
2x0,0,2,0,2,2
1x0,0,2,0,4,2,2,2
1x0,0,2,2,1,2,0,1
1x0,1,1,0,2,0,0,2
1x0,2,2,0,4,0,2,2
@@
#40
2x0,0,1,0,0,1
2x0,0,1,1,1,2,0,3
2x0,0,3,0,2,1
2x0,1,1,0,3,1,1,2
1x0,1,2,0,2,1,0,2
@@
#41
2x0,0,1,0,1,1
3x0,0,1,1,0,2
1x0,0,3,0,1,1
1x0,0,3,0,2,1
3x0,1,1,0,3,1,1,2
@@
#42
1x0,0,1,0,2,1,1,2,0,2
1x0,0,1,0,2,1,2,2,1,2,0,1
1x0,0,1,1,1,2,0,2
1x0,0,2,0,2,1,1,1
1x0,0,2,0,2,1,1,2,0,1
2x0,0,3,0,2,1,1,1
@@
#43
4x0,0,1,0,2,1,2,2,1,2,0,1
4x0,0,1,1,0,2
@@
#44
1x0,0,0,2,2,2,2,0
4x0,0,1,1,0,2
4x0,0,2,0,0,2
@@
#45
4x0,0,1,1,0,2
1x0,0,2,0,0,2
2x0,0,2,0,3,1,2,2
1x1,0,3,2,2,3,0,1
@@
#46
1x0,0,1,0,2,1,1,2,0,2
2x0,0,1,1,0,2
2x0,0,2,0,1,1,0,1
2x0,0,2,0,2,1,1,1
2x0,1,1,0,2,1,2,2,1,2
@@
#47
1x0,0,0,2,1,3,2,2,2,0
1x0,0,1,0,1,1,0,1
1x0,0,1,0,2,1,0,1
1x0,0,1,0,2,1,1,2,0,1
2x0,0,2,0,1,1,0,1
1x0,0,2,0,2,1,1,2,0,1
@@
#48
1x0,0,1,0,0,1
1x0,0,1,0,1,1,0,1
1x0,0,1,0,1,1,0,2
1x0,0,1,0,1,2,0,3
1x0,0,1,0,1,3,0,4
1x0,0,1,1,0,2
1x0,0,2,0,0,2
1x0,0,2,2,0,4
@@
#49
1x0,0,1,0,1,1,0,1
1x0,0,1,0,1,1,0,2
1x0,0,1,0,1,2,0,1
1x0,0,2,0,0,2
4x0,1,1,2,2,1,2,0,1,0
@@
#50
1x0,0,3,0,0,3
1x0,3,3,0,3,3
1x0,3,3,0,4,0,0,4
1x0,4,4,0,4,1,1,4
@@
#51
2x0,0,0,1,1,0
1x0,3,3,0,4,0,0,4
1x0,4,4,0,4,1,1,4
2x1,0,2,0,0,2,0,1
2x2,0,3,0,0,3,0,2
@@
#52
1x2,0,3,2,0,2,0,1
1x0,0,4,0,2,2
1x0,0,2,0,2,2,1,2
1x0,0,2,2,0,3
1x2,0,2,2,0,2
@@
#53
2x0,0,1,1,1,3,0,4
2x0,0,3,0,2,1,1,1
2x0,0,1,0,0,1
1x0,2,0,3,1,3,3,1,3,0,2,0
@@
#54
2x0,0,2,0,2,1,1,1,1,2,0,2
2x0,0,2,0,2,1,1,1,1,4,0,4
@@
#55
2x0,0,2,0,2,1,1,1,1,2,0,2
1x0,0,2,0,2,1,1,1,1,4,0,4
1x0,0,3,0,3,1,1,1,1,3,0,3
@@
#56
1x0,0,4,0,4,1
1x0,0,4,1,4,2
1x0,0,4,2,4,3
1x0,0,4,3,4,4,3,4
1x0,0,3,4,0,1
1x0,0,3,3,0,1
1x0,0,3,2,0,1
1x0,0,3,1,0,1
@@
#57
2x0,0,1,0,3,2,1,2,0,1
2x0,0,3,0,3,1,1,1
2x0,0,2,0,2,2
@@
#58
1x0,0,0,3,3,0
2x0,0,0,1,1,2,2,1,1,0
2x0,0,1,1,2,0
1x0,0,1,1,1,0
1x0,0,0,1,1,1,1,0
1x0,1,2,3,2,2,3,2,1,0,1,1
@@
#59
2x0,0,0,1,1,2,1,0
2x0,0,0,1,1,0
4x0,0,1,1,2,1,3,0
2x0,0,0,2,2,2
@@
#60
1x0,0,2,0,2,1,1,1
1x0,0,2,0,1,1,0,1
1x0,0,1,0,2,1,1,1,1,2,0,1
1x0,0,1,0,2,1,2,2,1,2,0,1
4x0,0,3,0,2,1,1,1
@@
#61
1x0,0,1,0,3,2,1,2,0,1
1x0,0,3,0,3,1,2,2
1x0,0,2,0,1,1
1x0,0,1,0,2,1,2,2,1,2,0,1
1x0,0,3,0,2,1,1,1
1x0,0,3,0,2,1,2,2,1,2,1,1
@@
#62
1x0,0,4,0,4,1,1,1
1x0,0,1,1,2,1,2,2,1,2,0,3
1x0,0,1,0,1,1
1x0,0,2,0,2,2
2x0,0,3,0,3,1,2,2
@@
#63
1x0,0,2,0,1,1
1x0,0,1,1,1,2,0,1
1x0,0,2,0,3,1,1,1
1x0,0,1,0,2,1,2,2,1,2,0,1
3x0,0,1,1,2,1,2,2,1,2,0,3
@@
#64
2x0,0,1,0,0,1
2x0,0,2,0,1,1
2x0,0,2,0,2,1,1,1
4x0,0,1,0,2,1,1,1
6x0,0,1,1,1,2,0,1
@@
#65
2x0,0,1,0,0,1
1x0,0,1,1,0,2
1x1,0,3,2,1,4,0,3,1,2,0,1
2x0,0,3,0,2,1,1,1
1x0,0,2,0,2,1,1,2,1,1
1x0,0,2,0,1,1,1,2,0,1
@@
#66
1x0,0,4,0,4,1,3,2,2,1,1,1
2x0,0,2,0,1,1,1,2,0,1
1x0,0,2,0,2,1,1,2,1,1
1x0,0,1,0,1,2,0,1
1x1,0,1,1,2,2,1,3,1,2,0,1
1x1,0,2,1,2,2,1,1,1,2,0,1
@@
#67
1x0,0,2,0,2,1,4,3,2,3,2,2
1x0,0,1,1,0,2
1x0,0,2,2,2,3,0,1
1x0,0,2,0,2,2
1x0,0,1,1,1,2,0,1
1x1,0,1,1,2,2,1,3,1,2,0,1
1x0,0,2,0,1,1,0,1
1x0,0,3,0,2,1,0,1
@@
#68
1x0,0,1,0,1,1
2x0,0,2,0,2,2,1,1,0,2
3x1,0,2,1,1,1,1,2,0,1
1x0,0,2,0,2,2,1,2,1,1
1x0,0,2,0,1,1,1,2,0,2
@@
#69
1x0,0,1,0,0,1
1x0,0,2,0,1,2,0,1
1x0,0,2,0,2,2,0,1
1x0,0,2,0,2,2,1,1,0,2
1x0,0,1,0,1,2,0,2
1x0,0,2,0,0,2
1x1,0,1,1,3,3,2,4,2,3,0,1
@@
#70
1x0,0,1,0,1,1
1x1,0,2,1,1,2,0,1
1x0,0,3,0,1,1
2x0,0,3,0,2,1
2x0,0,2,1,0,2
1x0,0,2,0,0,3
1x0,0,2,0,3,2
@@
#71
2x0,0,2,0,1,2
2x0,0,4,0,2,1
4x0,0,3,2,1,2
@@
#72
1x0,0,2,0,0,4
1x0,0,2,0,1,2
1x0,0,4,0,2,1
1x0,0,4,0,3,2
1x0,0,3,2,2,4
@@
#73
1x0,0,2,0,3,1,1,1
2x0,0,2,0,1,1,1,2,0,1
2x0,0,2,0,2,1,1,2,1,1
1x0,0,1,0,1,2,0,1
1x1,0,1,1,2,2,1,3,1,2,0,1

1x1,0,2,1,2,2,1,1,1,2,0,1
1x0,0,1,0,0,1
@@
#74
1x0,0,2,0,1,1,1,2,0,1
4x0,0,2,0,2,1,1,2,1,1
1x0,0,1,0,0,1
1x1,0,2,1,3,1,2,2,1,1,0,1
1x0,0,1,0,1,1,0,1
1x0,0,2,0,1,1,0,1
1x0,0,1,1,1,2,0,1
@@
#75
1x0,0,1,0,0,1
1x1,0,2,1,3,1,2,2,1,1,0,1
1x0,0,2,0,2,1,1,1
1x0,0,2,0,2,2,1,1,0,1
1x0,0,2,0,0,2
1x0,0,4,0,4,1,2,1,2,2
1x0,0,2,0,2,1,1,2,0,2
@@
#76
1x0,0,1,0,1,2
1x0,0,1,2,0,3
1x0,0,3,0,0,1
1x0,0,2,0,1,3
1x0,0,2,0,0,2
1x0,0,1,2,1,3
1x0,0,2,0,1,2
1x0,0,1,0,2,1
1x1,0,3,2,0,3
@@
#77
2x0,0,1,0,2,1,2,2,1,2,1,1
2x0,0,1,0,2,1,2,2,1,1,0,1
1x0,0,3,0,2,1,1,1
1x0,0,1,0,2,1,1,1
1x0,0,1,0,1,1,0,1
1x1,0,2,0,0,2,0,1
1x0,0,2,0,0,2
1x0,0,1,0,0,1
@@
#78
1x0,0,2,0,1,1,1,2,0,3
1x0,0,2,0,2,1,1,1,1,2,0,1
1x0,0,2,0,2,2,1,1,0,1
1x0,0,1,0,1,2
1x0,0,1,2,1,3,0,2
1x0,0,1,0,1,1,2,2,1,2,0,1
1x0,0,1,1,2,1,1,2,0,1
1x1,0,1,1,2,2,1,3,1,2,0,1
@@
#79
2x0,0,2,0,2,2,1,1,0,1
2x0,0,2,0,2,1,1,1,0,2
1x0,0,1,0,1,1,0,1
1x0,0,3,0,3,1,2,2,2,1,1,1
1x0,0,1,1,1,3,0,2
@@
#80
1x0,0,4,0,2,2
1x0,0,2,0,2,2
1x0,0,4,0,3,1,1,1
1x0,0,2,0,2,2,1,3,1,1
2x0,0,1,1,1,3,0,2
@@
#81
2x0,0,2,0,3,1,2,2
1x1,0,3,0,1,2,0,1
2x0,0,2,0,1,1,2,2,0,2
1x0,0,2,0,1,1
@@
Replies are listed 'Best First'.
Re: Tk::Zinc based geometry puzzles
by zentara (Archbishop) on Apr 22, 2008 at 16:25 UTC
    One suggested improvement..... on my screen, some of the line segments on some of the items, vary in thickness by a pixel ( a section looks thicker than the rest). You can take advantage of the bezier smoothing of the curves ( all lines in Zinc are just straight curves ), by adding smoothrelief
    $current = $zinc->add( 'curve', 1, [@points], -closed => 1, -visible => 1, -filled => 1, -fillcolor => $color, -smoothrelief => 1 # add this );

    I'm not really a human, but I play one on earth. Cogito ergo sum a bum

      Hmmm. It doesn't seem to make any change for me, then again, I'm not seeing that effect on my system. It doesn't seem to hurt either so it's probably worth adding for the people it helps. Thanks.

        Yeah, the strangness was random depending on how the items were placed and rotated, it only happened on occaision, and not always to the same item. What would happen, was that the line segment of a triangle side, would be 2 pixels wide at it's center region, but only 1 pixel near it's end points. Or, there might be a slight stair-stepping effect if the angle was right. Maybe it's my video card?

        I'm not really a human, but I play one on earth. Cogito ergo sum a bum

Log In?
Username:
Password:

What's my password?
Create A New User
Node Status?
node history
Node Type: sourcecode [id://681969]
help
Chatterbox?
and the web crawler heard nothing...

How do I use this? | Other CB clients
Other Users?
Others chilling in the Monastery: (4)
As of 2020-09-30 01:01 GMT
Sections?
Information?
Find Nodes?
Leftovers?
    Voting Booth?
    If at first I donít succeed, I Ö










    Results (156 votes). Check out past polls.

    Notices?