Well, for any given target node you build a string of the correct number of left and right moves (or zeroes and ones) and then any permutation is one of the admissible solutions (and all of them).
UPDATE: Just as illustration, using a module, and having to filter out duplicates in the permutations, it could work like this:
use strict;
use warnings;
use Algorithm::Permute;
my $node = '5-2';
my ($all, $right) = split /-/, $node;
my @path = ((0) x ($all-$right),(1) x $right);
my %pathes;
Algorithm::Permute::permute {
my $key = join '', @path;
if( not exists $pathes{$key} ) {
$pathes{$key} = 1;
my ($l, $r) = (0,0);
my $path = "($l-$r) ".join( " ", map{ "(".(++$l)."-".($r+=$_).
+")" } @path);
print "$path\n";
}
} @path;